The Implementation of the Amchitka Independent Assessment Science Plan

Meeting of the Interagency Amchitka Policy Group Anchorage Alaska March 3, 2005

CRESP PRESENTATIONS

Introduction to and Context for the Amchitka Assessment Plan, the 2004 Expedition and Subsequent Work

- Charles W. Powers, Ph.D. UMDNJ and CRESP II PI

Summary: the Health and Safety Plan for the Expedition

- Michael Gochfeld, M.D., PhD., UMDNJ and Expedition Medical Officer

Presentation on Geophysical Investigations

- David Kosson, Ph.D., Vanderbilt and Amchitka Project Leader, Geophysical Investigations

Presentation on Amchitka Biological Sampling

- Joanna Burger, Ph. D., Rutgers and Project Leader, Amchitka Biological Sampling

Presentation on Sample Selection

- Joanna Burger

Presentation on Radionuclide Analysis of Biological Samples

- David Kosson, Amchitka Project Leader, Radionuclide Analysis

Introduction to and Context for the Amchitka Assessment Plan, the 2004 Expedition and Subsequent Work

Goals of the Assessment Plan, the Expedition and the Analysis

To determine:

- 1. whether there is any current threat to human health and environment from radionuclide release into the Island's sea waters from nuclear tests shots at Amchitka; and
- 2. a baseline of biological and physical data that should aid in the development of a long-term stewardship plan (likely including subsequent monitoring against the baseline) now scheduled for completion during FY2005.

The 6/02 Letter of Intent has been the lodestar for CRESP efforts and its understanding of its role in the Amchitka process

Researchers and Staff Working on Amchitka

Rutgers University

Joanna Burger Sean Burke Mark Donio Christian Jeitner Henry Mayer Yuri Mun Sheila Shukla

Vanderbilt University

Rosanne Delapp Maryann Emmons Derek Favret David Kosson Dan Riley Michael Stabin

<u>UMDNJ</u>

Barry Friedlander
Michael Gochfeld
Charles Powers
Art Upton
Vikram Vyas
Carline Dixon

<u>University of</u> <u>Pittsburgh</u>

Conrad Volz

<u>University of</u> <u>Mississippi</u>

James Weston

University of Alaska Fairbanks

David Barnes
Heloise Chenelot
Lawrence Duffy
Anna Forsstrom
Shawn Harper
Max Hoberg
Stephen Jewett
Mark Johnson
Sookmi Moon

University of Alberta

Chrystal Rae William Shulba Wolfgang Soyer Volkan Tuncer Martyn Unsworth

Researchers and Staff Working on Amchitka

Aleutian Pribilof Island Association

Robert Patrick

Dan Snigeroff

Ron Snigeroff

Timothy Stam

<u>IRM</u>

Lisa Bliss

Joy Hardy

Tariq Siddiqui

Xiomara Waldron

U.S. Fish and Wildlife Service

<u>Department of Energy – NNSA</u>

Alaska Department of Environmental

Conservation

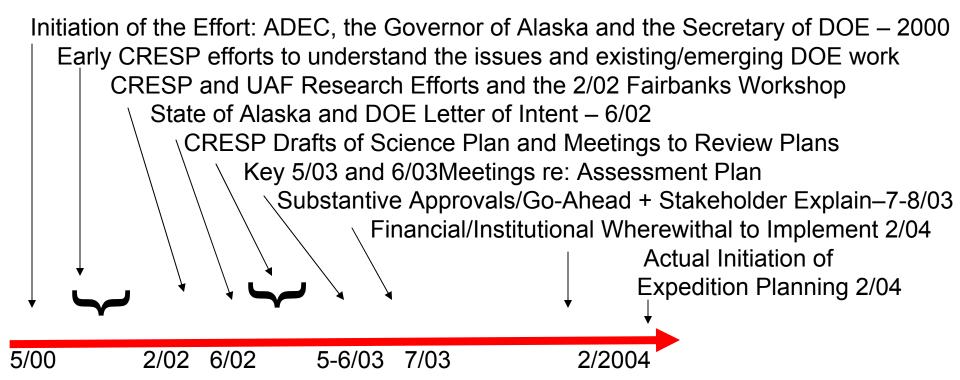
Desert Research Institute

Ocean Explorer - B&N Fisheries

United States Navy

INL – RESL & Bechtel/Batelle

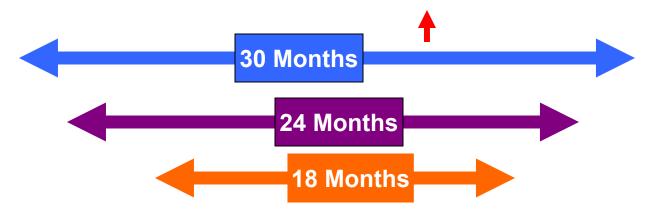
<u>Rutgers University Risk Management</u> <u>Office</u>


	Rutgers	Vanderbilt	UMDNJ	UAF	U Pitt	U Alberta UMiss		
Initial Research/ Workshop								
Assessment Plan Development								
Expedition Plan Development								
Physical Field								
Biological Field								
Sample Def/Prep								
Radionclide Def/Analysis								
Investigation Results								
Study Synthesis								

Remembering What Got Us to This Meeting

Two Timelines: Process leading to the Approval of a Science Plan and its Financing

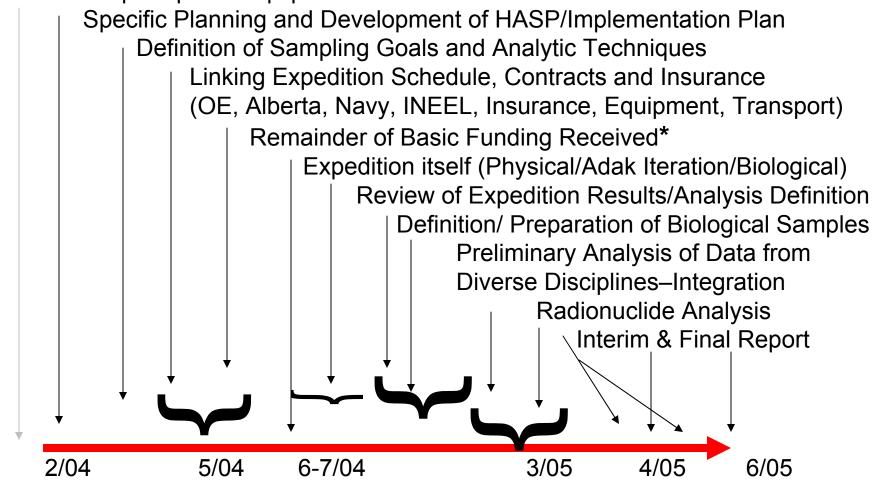
Subsequent Process


Process leading to the Approval of a Science Plan

From the Approved Science Plan – p.142-3

Table 12: Amchitka Science Plan Timeline

		2003	2003	2004	2004	2004	2004	2005	2005	2005	2005
		Jun-Sep	Oct-Dec	Jan-Mar	Apr-Jun	July-Sep	Oct-Dec	Jan-Mar	Apr-Jun	July-Sep	Oct-Dec
k l	SAMPLING THE MARINE ENVIRONMENT										
l	Biological Sampling										
L_1	Palininy Smplig	Plan-coll	Andya								
L2	Main sampling			Plan	Plan.	Collect	Amiyee	Amalyza:	Plan	Collect	Ambjec/report
<u>1.3</u>	Biodiversity			Pina.		Collect	Amiyee			Collect	Report
L.A	Bioacomulation					Collect	Amilyea	Raport			
2	Physical Minine Environment										
2.1	Water Samples					Collect	Amiyee				Report
22	Sediment Sampling					Collect	Amiyes				Report
23	Physical Analysis of Sediment					Collect	Amiyee				_
3	Radiomelide Analysis										
3.1	Biota						Amlyes	Amalyza	Andyn		Amiyee
3.2	Water/endiment									Amiyee	
	Himme Food	Collect	Collect			Collect	Amiye				Report
k 2	OCEANOGRAPHY										
ļ	Ocean floor supping			Plan.	Pha	Collect	Collect	Collect	Collect	Collect	Repost
2	Salimity structure		Plan			Collect	Amiyee				Report
3	Ocean circulation	Model	Deploy	Analyz:		Collect	Amiyee	Model	Model	Model	Report


Introduction to and Context for the Amchitka Assessment Plan, the 2004 Expedition and Subsequent Work

		2003 Jun-Sep	2003 Oct-Dec	2004 Jan-Mar	2004 Apr-Jun	2004 July-Sep	2004 Oct-Dec	2005 Jan-Mar	2005 Apr-Jun	2005 July-Sep	2005 Oct-Dec
k 3	GEOLOGY/HYDROLOGY								_		
1	Data recovery and synthesis	Data recovery and synthesis			Report						
2	Subsurface interface		Plan	Plan	Plan	Collect	Analyze			Collect	Report
3	Groundwater recharge		Plan	Plan	Select	Install	Data	Analyze	Model	Install	Analyze/report
4	Radionuclides at source		Plan	Analyze	Plan			Analyze	Plan		Analyze
5	Water/rock interaction		Develop	Find core	Analyze	Test	Test	Analyze	Report		
6	Sorption on sediments			Plan	Plan	Test	Test	Test	Analyze	Report	
7	Deformation of Amchitka			Plan	Purchase	Deploy	Analyze	Calculate	Model	Analyze	Report
k 4	STAKEHOLDER DIMENSIONS										
	Stakeholder interactions	Meetings-p	Meetings-planning Meetings-pl			Interns in field and lab		Meetings-Planning		Risk communication	
	Long-term monitoring needs	Planning	Date review	I			Date review	Indicators selection		Analyze	Report
NAGI	EMENT AND OVERSIGHT	Ongoing activity through out project cycle									

Process Since Approval and Go-Ahead

Initiation of University Agreements and Identification of Expedition Leadership Ship and Equipment

Expected Process – the Path Forward

Completion of Analysis
Articulation of Results from Each Segment
Integration of Results

Interim Report

Final Report

Stakeholder Communications

Consistent with the original discussions concerning risk communication of thecomplex scientific issues being addressed restated throughout the Assessment Plan's development discussions - CRESP is committed to integrating the results of all elements of its study into a complete report of its work as a whole rather than making its results available piecemeal.

3/05 7/05